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A kriging-assisted light beam search method is proposed to solve multi-objective inverse problems. To reduce the computational 
burden and to increase the convergence speed, a kriging model is introduced into the evolutionary procedure of the light beam search 
method. To guarantee the accuracy of the final Pareto solutions, a dynamic detecting strategy is used in the light beam search method. 
To reflect the preference of a decision maker in decision making, a boundary control mechanism is proposed to assure all the obtained 
Pareto solutions are well-distributed within the preference of the decision maker. To testify the accuracy of the proposed method, a 
series of test functions and a benchmark inverse problem TEAM Workshop Problem 22 are solved. The numerical results demonstrate 
the effectiveness and efficiency of the proposed method.  
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I. INTRODUCTION 

N DESIGNS of an electromagnetic device, conflict objectives 
are often involved which cannot be optimized at the same 

point. Therefore, a lot of excellent multi-objective 
optimization methods, aiming to find complete and even 
Pareto solutions, have been developed successfully in recent 
years.  However, computations of the objectives in inverse 
problems are always implemented by numerical methods such 
as finite element analysis (FEA) which is overwhelmingly 
time-consuming. The unendurable optimization calculation 
time has become one of the most important and difficult 
obstacles for current multi-objective optimization algorithms 
to be used wildly in the practical designs. Therefore, 
endeavors have been made to reduce the FEA calculations and 
increase the convergence speed of the algorithm by balancing 
the exploration and exploitation, and modifying the 
evolutionary procedures of the optimization method. Among 
these strategies, the kriging model is a promising tool due to 
its explicit mathematical concept and performance in 
surrogating the nonlinear objective space. Typical 
optimization methods based on kriging model are summarized 
in [1]-[4]. In [1], a novel multi-objective evolutionary 
algorithm based on kriging surrogate models is applied to the 
design of a surface-mounted permanent magnet motor. The 
kriging-assisted multi-objective evolutionary algorithm is 
proved to have the potential of providing good solutions with 
a limited computation time budget. In [2], a dynamic Taylor 
kriging is combined with a multi-objective differential 
evolution algorithm to solve electromagnetic inverse problems. 
In this paper, the bias function of kriging is not fixed but 
optimally selected to minimize the fitting error. In [3], a 
kriging-assisted adaptive weighted expected improvement 
with rewards approach is proposed. In [4], a combination 
method with adaptive Taylor kriging and particle swarm 
optimization is given. All these algorithms can obtain Pareto 
solutions successfully and reduce the calculation of FEA 

effectively. There are mainly divided into two categories: 
searching for one Pareto solution [3] [4] and searching for a 
whole Pareto solutions [1] [2] [5]. However, from a practical 
engineering perspective, only one solution for the design is 
presumptuous and a whole Pareto front of a multi-objective 
design problem may not always necessary. In some cases only 
a special part of the Pareto front is attractive for a decision 
maker (DM). It is essential that the algorithm could use the 
knowledge of the DM to guide the iterative search process to 
minimize nonproductive explorations of the objective space 
[6]. In this regard, a kriging-assisted light beam search method 
[7] is proposed to obtain any fraction of the whole Pareto front 
under the preference of a DM with less FEA calculations. 

II. KRIGING-ASSISTED LIGHT BEAM SEARCH METHOD 

A. Dynamic Detecting Strategy 

Most of the current kriging-assisted optimization algorithms 
are to build an accurate kriging model firstly and then use this 
model in an optimization method to predict the objective 
function value. Building a precise kriging model needs lots of 
sampling points and the completely uncoupling process of 
modeling and optimization is not beneficial to decrease the 
number of FEAs. In this regard, in the proposed method the 
kriging model is updated within the light beam search method 
using a dynamic detecting strategy. After every hundred 
iterations, a detecting procedure is triggered to measure the 
accuracy of the kriging model. In the detecting section, an 
individual is picked up randomly in the current population and 
its objective value is computed using FEA. Compare the 
predicted value given by the kriging model and the objective 
value of the designated point and record the difference as e. A 
Flag Index IF is defined as: 

0exp( ( ) )FI e e T                                   (1) 

where, e0 is the maximum tolerance error; T is a control 
parameter. If the value of the Flag Index is smaller than a 
random number r generated in [0,1], the kriging model is need 
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to be updated. In order to make the full use of the current 
information, the new sampling points to update the kriging 
model are based on the current population instead of a random 
sampling. Because although the model is not as accurate as 
demanded yet, the current individuals are still the superior 
solutions to some extent. 

B. Boundary Control Mechanism 

In the light beam search method [7], the searching direction 
is defined by using a reservation point and aspiration point, 
and the middle point is the intersection of the searching 
direction and Pareto front. A veto threshold is defined as the 
maximum change based on the middle point. The boundary of 
the searched Pareto segment is based on the middle point and 
the veto threshold. The middle point is unknown at the 
beginning of the searching process, and is evolved through the 
iteration procedure of the algorithm. Therefore, the original 
light beam search method suffers a poor performance in terms 
of robustness performances. Once the middle point is shifting, 
the Pareto segment is deviating. The searched Pareto solution 
can not represent the preference of DM precisely. To reflect 
the preference of the DM more strictly, a boundary control 
mechanism is proposed. The boundary of Pareto solutions 
searched is detected in iterations. If the boundary is overpass 
the preference of DM, a new division of the subdomains onto 
the utopia plane will be complemented which is related with 
the boundary and distribution of the Pareto solutions. 

III. NUMERICAL RESULTS 

To validate and demonstrate the advantages of the proposed 
algorithm, the test function MOP2 and the TEAM Workshop 
problem22 in [5] are solved. 

The parameters of the proposed algorithm for solving 
MOP2 are set as: nd =5, z_r=[0 0], z_ v=[1 1], v=[0.05 0.05], 
N=40, θ0=[10 10 10], e=10-4; while for solving the TEAM 
Workshop Problem 22 are set as: nd =10, z_r=[0 0], z_ 
v=[0.08 0.08], v=[0.009 0.02] , N=40, θ0=[10 10 10],  e=10-4. 
nd is the number of the desired Pareto solutions; z_r and z_v is 
the aspiration point and reservation point, respectively; v is the 
veto threshold; N is the number of the population; θ0 is the 
initial parameter for the kriging model; e0 is the maximum 
tolerance error. Fig. 1 and Fig. 2 give the searched Pareto front 
using the proposed method for MOP2 and TEAM Problem 22 
respectively. Obviously, the proposed method can find a 
referenced segment within the whole Pareto frontier. Table I 
and Table II are the comparison of some key points of the 
original [7], the improved [8] and the proposed method for 
MOP2 and Workshop Problem 22. It is clear that the proposed 
method can find a preference part of Pareto front successfully 
while the iterative number of FEA is decreased dramatically.  
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Fig. 1. The searched Pareto front of MOP2:  the whole Pareto front obtained 
by a normal intersection method,  by the proposed method. 

 

Fig. 2. The searched Pareto front of TEAM work 22:  the whole Pareto 
front obtained by a normal intersection method,  by the proposed method. 

TABLE I 
KEY POINTS OF THE ORIGINAL AND THE PROPOSED METHOD ON MOP2 

algorithm Middle point Max-F1-point Max-F2-point 
No. of 
iterations 

original  (0.632,0.632) (0.681,0.581) (0.580,0.680) 20000 

improved (0.491,0.491) (0.681,0.581) (0.581,0.681) 11649 

proposed (0.633,0.633) (0.681,0.581) (0.581,0.681) 390 

 
 TABLE II 

KEY POINTS OF THE ORIGINAL AND THE PROPOSED METHOD ON TEAM 22 

algorithm Middle point Max-F1-point Max-F2-point 
No. of 
iterations 

original  (0.0597,0.0610) (0.0687,0.0350)  (0.0535,0.0810) 20000 

improved (0.0712,0.0712) (0.0733,0.0335)  (0.0544,0.0790) 11361 

proposed (0.0649,0.0640) (0.0740,0.0290) (0.0567,0.0812) 587 
 

 


